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unlabeled ones across the underlying data manifold via the e T oL o
label propagation algorithm (LPA) at the feature-embedding o
level.we could take advantage of the correlation between o Al o A
the labeled and unlabeled samples to improve pseudo-label P Y T AN T
generation. - e
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proposed class-aware contrastive loss, so that the same-
class samples are gathered and the different-class samples

are scattered.
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(b) Training Phase.
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Let (xy,, py) be a batch of B labeled

samples and uy be a batch of ¢ 5 unlabeled samples where

| _|—>' % —p ﬁ_ﬁ --------- 0y 1t denotes the size ratio of xy, to .
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(b) Training Phase. ; .
where 1(-) retains the pseudo-labels whose maximum prob-
ability is higher than a predefined threshold 7, i.e. high-
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Flg B high-confidence labels can inevitably include errors. In or-
g jﬁ-)- g der to decrease the noise, we do K random sampling with
. replacement on the dequeue data (1.e. bagging), and denote
: each sampling result as op—1 (k) and gp—1(k), where k =
e | 1,2, ... K. After that, we can split the sampling data with
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(a) Inference Phase. hwh(ﬁ,] = 1(max(qp_1(k)) = 7) op_1(k), (4)
oy (k) = L(max(qp—1(k)) < 7)op_1(k).  (5)
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(a) Inference Phase.
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(b) Training Phase.
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CIFAR-10 CIFAR-100 SVHN

Methods 40 labels 250 labels 400 labels 2500 labels 40 labels 250 labels
[I-Model” = 45.7443.87 & 42.754+0.48 % 81.04-+1.92
Pseudo-label”® - 50.224+0.43 - 42.6210.46 - 79.79+1.09
Mean-Teacher” - 67.684+2.30 - 46.094+0.57 - 06.434+0.11
MixMatch” 52.46+11.50 88.954+0.86 33.39+1.32 60.06+:0.37 57.45+14.53 96.02+0.23
UDA™ 70954593  91.184+1.08 40.72+0.88  66.87+0.22 47.37+20.51 94.31+2.76
ReMixMatch* 80.90+9.64 94.561+0.05 55.72+2.06 72.57+0.31 96.64+0.30  97.08+0.48
FixMatch™ 86.19+3.37 94931065 51.15+£1.75 71.7140.11 96.04+2.17  97.52+0.38
ACR' 92.38 95.01 - - - -
SelfMatch’ 03.194+1.08 95.134+0.26 - - 96.58+1.02 97.37+0.43
CoMatch' 93.09+1.39  95.0940.33 - - - -
Dash’ 86.784+3.75 954440.13 55.244096 72.824+0.21 96.97+1.59  97.83+0.10
LaSSL 95.07+ 0.78 95.71 +0.46 62.33+2.69, 74.67+0.65 96.91+0.52 97.85+ 0.13
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Table 1: Top-1 testing accuracy (%) for CIFAR-10, CIFAR-100 and SVHN on 5 different folds. All the related works are sorted
by their publication date. Results with * was reported in FixMatch (Sohn et al. 2020), while results with T comes from the most
recent papers (Kim et al. 2021; Li, Xiong, and Hoi 2020; Xu et al. 2021; Abuduweili et al. 2021), respectively.
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Method CACL BLPA DA Quantity Quality Accuracy

Vanilla X X X 839 81.98 75.54
LaSSL-vi v X X 8866  89.38 85.50
LaSSL-v2 v v X 8908 9431 90.24
LaSSL-v3 X X VvV 873 9490 90.42
LaSSL-vd v X v 8746 94.89 91.11
LaSSL-v5s v v v 8703 9533 91.65

Table 2: Ablation studies on CIFAR-10 with 40 labeled data
after training 100 epochs (random seed 1s fixed to 1.)



Advanced Technique
of Artificial

(éj Chongging oLl

University of

a0
80 80
70 70
= o
- @
§ B0 g 80
50 i ! 50
=:= \anilla Iy =:= \anilla [* =:= \anilla
4 LaSsLvi i 4 LaSsLvi Y 4 LaSsLvi
40 +  LaSSL-v2 40 - +  LaSSL-v2 40 - «  LaSSLw2
; < LaSSL-v3 j < LaSSL-v3 i < LaSSLv3
i *  LaSSL-vd *  LaSSL-vd & *  LaSSL-vd
0 —— LaSSLvs 0 —— LaSSLvs 0 \ —— LaSSLvs
0 20 40 80 B0 100 0 20 40 80 B0 100 0 20 40 80 B0 100
Epoch Epoch Epoch
(a) quantity (b) quality (c) accuracy

Figure 3: (a), (b), (c) represent curves of the quantity, quality, and EMA test accuracy of different combinations of CACL,
BLPA, and DA (better view on screen). Numerical results are listed in Table 2.
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£ 0.6 0T 0.8 0.9 1.0
Accuracy(%) 87.64 8939 R87.70 87.36 85.17

Table 3: Effects with different similarity thresholds. The
similarity is equal to 1 only when comparing the image in-
stance with itself. Therefore, we use ¢ = 1.0 to investigate
the effect of excluding the “class-aware™ technique.
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K 0 | 3 5 7
Accuracy(%) 92.71 92,10 94.64 9343 94.87

Table 4: Effects with different number of samplings. In spe-
cific, K = 0 means the plain LPA without “buffer-aided”;
A = 1 means exploiting the buffered data directly without
sampling: while i > 1 investigates the complete BLPA.
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